Chapter 7

Two Variable Linear Regression

In Chapters 3, 4, and 5 we examined the historic growth
patterns for Process Control Company’s sales; we
recognized that this traditional time-series component
analysis was inadequate for forecasting, due to the strong
business cycle fluctuations in the Process Control data.
Thus we now turn to regression analysis in its simplest form
(two variable linear) as an extension of time-series analysis.

Regression analysis measures the numerical association
between the independent explanatory variable and the
dependent sales variable. The objective of this statistical
approach is to forecast sales based on an equation
describing the historical response of sales to an activity
variable in the marketplace.

7.1 The Two Variable Linear Regression Model

When we endeavor to predict sales, Y, based on the value
of the explanatory variable, X, the quantity we are seeking
is expected sales, E(y), for a predetermined value X, say
Xo- Hence, regression analysis is approached from the
standpoint of drawing inferences from a particular set of
sample (historical) observations to the population (or
underlying) relationship. The population is represented by
the simple linear regression model in Figure 7.1, consisting
of all paired (X, Y) observations. Furthermore, this
population is partitioned into subpopulations of all the Y
values related with each specified X. The possible values of
the explanatory variable, X, are constants, fixed in advance.
Thus the sales variable, Y, is random and dependent on the
value specified for X. :

We generalize the two variable linear regression model
under these assumptions:

1. Linearity. The average Y for each subpopulation is the
expected Y for each X value, i.e., py x. These conditional
expected values fall in a straight line defining the
population equation Y regressed on X:

ry X =B +BoX. (7.1)

In this linear model, By and B, are population parameters:
B; is the Y-intercept (expected sales when X is zero), and

B5 is the regression line slope (the change in Y for one unit
change in X). The parameter B, is the regression
coefficient. See Figure 7.2,

2. Normglity. All of the Y subpopulations are normally
distributed.

3. Homoscedasticity. All of the Y subpopulations have
the same variance, assuring uniform dispersion of the points
about the line of regression:

oy12=oys?=...=0olyx (7.2)

4. Independence. The Y/ uy.x Values are statistically
independent of X.

Recognizing by the nature of the expected value concept
that it is unreasonable for all individual Y values to fall on
the line uy x = By + BX, we must refine the predicting
equation for sales as:

y X =By +ByX+¢ (1.3)

where,

€; = residual errors of each individual Y from the
expected value of Y, or, €; = (Yj — uy x).

Continuing, €; itself is an independent random variable,
normally distributed with an expected value of zero and a
constant variance for all ;i observations. Of course, in
practice we do not know the population regression line.
Since a straight line is defined by its intercept, By, and
slope, By, our task is to approximate the population
regression line by deriving estimates for By and B,. These
estimates are obtained from paired sample observations so
the sample regression line serves as our estimate of the
population regression line, i.e., the population regression
model:

ry X =Bj+ByX+¢ (7.4

is estimated by the sample regression model:
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Figure 7.1

Simple Linear Regression Model:
Normally Distributed Y Subpopulations

of Specified Values for X

+ B,X

Figure 7.2

Characteristics of a Simple Linear Regression Line for Population Data
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Yo=b; +bpX+¢ 7.5

where,

Y, = point estimate of uy x.

by = point estimate of Bj.

by = point estimate of B,. :

€; = sample residual error, (Yj — Yjc), or simply €; = (Y
o)

7.2 Case Study: Process Control Company

At this point let us reconsider Process Control
Company’s sales of factory machinery control devices to
facilitate the discussion. We feel it would be useful to know
whether there is any statistically measurable association
between quarterly sales for Process Control and the
hypothesized explanatory (causal) variable, New Plant and
Equipment Expenditures by U.S. manufacturing durable
goods industries. So that a study of these two factors can
be made, we assembled the data in Table 7.1 and plotted
the bivariate observations on the scatter diagram in Figure
7.3.

We can see from the scatter diagram that there is a
tendency for the data points to cluster along a band
extending from the lower left to the upper right and that
this cluster of points suggests the existence of a positive
linear relationship. Our objective is to determine a line of
average relationship between the X and Y values of the
points. We may approximate a straight line either by
freehand methods of curve fitting or by using the objective
method of least-squares. By the method of least-squares,
the parameters By and B, of the regression equation are
determined such that the sum of the squared residual errors
is a minimum. You will recall that residual error is defined
as ¢ = (Yj — wy.x;)- Substituting the least-squares
estimates, by and b, for B and By, and letting # be the
number of sample observations, we have:

n n
z ef = min. _El(Yi — by — byX2. (7.6)
1= 1=

Hereafter we will drop the ; from the Y and X notation but
the meaning does not change. Resolving* this classical
minimization problem results in the simultaneous solution
of two normal equations:

ZY =nb; + bpZX = (Normal Equation I) .7
ZXY = by X + by=X2 = (Normal Equation IT) (7.8)

for the values of b; and by. The equation for by, the
intercept, obtained by solving Normal Equation I, is
writtert:

b= ZY-D2ZX 9% (1.9)
n

The equation for by, the slope, obtained by solving Normal
Equation I1, is written:

by = NEXY - IXZY 10)

nZX2 — (£X)2

Table 7.2 illustrates the computational procedure using the
Process Control data. The resulting regression equation has
been plotted on the scatter diagram in Figure 7.4. We can
see already that the actual points differ from the regressioft
line, indicating that not all the variation in sales is
statistically associated with variability in the explanatory
variable, New Plant and Equipment Expenditures.

Concluding this explanation of estimating the
population regression line, we now enumerate the
characteristics of least-squares linear regression:

1. The sum of the residual errors is zero, i.e., T (Y — Y.)
=0.

2. The sum of the sguares of the residual errors is
minimum, i.e., (Y — Y)“ = minimum.

_ 3. The computed regression line passes through the point

X.Y).

4. The estimates by and by are unbiased, i.e., E(b;) = B;
and E(by) = B.

7.3 Analysis of Residual
Errors: Standard Deviation of Regression

For purposes of forecasting, the usefulness of the
regression line depends on the closeness of actual points to
the regression line. A statistical measure showing closeness
in concentration of the actual observations around the
regression line is called the standard deviation of regression
(standard error of estimate of Y on X). For the population
this measure is:

_ 2
o2y x = 2 ~ty.x) (7.11)
where,

Y = observed sales;

My x =Bp + ByX;and

N = size of the population.

Because the regression analysis is based on sample data,
the approximating formula is:

_ 2
Sy x= EY-Y© (7.12)
n—-2
when,

Yc =bp +byX;and
n = number of pairs of actual observations. A more
convenient calculating equation is:

Y2~ bZY — byZXY
n—2

SZY.X = (7. 1 3)

Interpretation of the standard deviation of regression is
similar to that of the standard deviation for any probability
function. The measure provides the means to construct
intervals about the regression line within which specified
percentages of the actual data points may be expected to
lie. For example, assuming normally dispersed observations
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Table 7.1 New Plant § Equipment Expenditures, (NPEE),
Manufacturing Durables, & Process Control Company Sales

(1) (2) (3) (4) (5)
Paired Quarter NPEE, Mfg. Durables, Quarter Process Control Co.
Observation § Year Seasonally adjusted, & Year Sales, Seasonally
Number Annual Rate (t+2) Adjusted, (t)

X Y

Billion dollars Y10 million dollars

1 1-1966 13.28 3-1966 226
2 2-1966 13.98 4-1965 245
3 3-1966 14.18 1-1966 254
4 4-1966 14.58 2-1966 285
5 1-1967 14.46 3-1966 261
6 2-1967 14.26 4-1966 249
7 3-1967 13.92 1-1967 242
8 4-1967 13.71 2-1967 225
9 1-1968 14.11 3-1967 235
10 2-1968 13.51 4-1967 225
11 3-1968 14.47 1-1968 216
12 4-1968 14.39 2-1968 224
13 1-1969 15.47 3-1968 245
14 2-1969 15.98 4-1968 300
15 3-1969 16.53 1-1969 327
16 4-1969 15.88 2-1969 298
17 1-1970 16.40 3-1969 286
18 2-1970 16.32 4-1969 264
19 3-1970 15.74 1-1970 233
20 4-1970 14.92 2-1970 224
21 1-1971 14.21 3-1970 228
22 2-1971 14.06 4-1970 194
23 3-1971 13.76 1-1971 193
24 4-1971 14.61 2-1971 210
25 1-1972 15.06 3-1971 223
26 2-1972 ' 14.77 4-1971 238
27 3-1972 15.67 1-1972 273
28 4-1972 16.86 2-1972 287
29 1-1973* 17.88 3-1972 287
30 2-1973* 18.70 4-1972 301

*
For these two data points we used "outside'" econometric forecasts for

U. S. new plant and equipment expenditures, manufacturing durable goods

industries.

Source:

Survey of Current Business: Process Control Company.




Figure 7.3

Scatter Diagram: Process Control Company Sales and New Plant and Equipment

Expenditures, Mfg. Dur.
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Table 7.2 Calculations Required for Determining Regression Line

Constants
(1) (2) (3) (4 (5)
NPEE, Mfg. Dur., Process Control () x (2 2 2
Seasonally adj. Company Sales, (2) (3)
Annual Rate (t+2) Seasonally adj.
(t)
X Y XY X2 y?
Billion dollars 100,000 Dollars
13.28 226 3001.28 176.36 51076
13.98 245 3425.10 195.44 60025
14.18 254 3601.72 201.07 64516
14.58 285 4155.30 212.58 81225
14.46 261 3774.06 209.09 68121
14.26 249 3550.74 203.35 62001
13.92 242 3368.64 193.77 58564
13.71 225 3084.75 187.96 50625
14.11 235 3315.85 199.09 55225
13.51 225 3039.75 182.52 50625
14.47 216 3125.52 209.38 46656
14.39 224 3223.36 207.07 50176
15.47 245 3790.15 239.32 60025
15.98 300 4794.00 255,36 90000
16.53 327 5405. 31 273.24 106929
15.88 298 4732.24 252.17 88804
16.40 286 4690.40 268.96 81796
16.32 264 4308.48 266,34 69696
15.74 233 3667.42 247.75 54289
14.92 224 3342.08 222.61 50176
14.21 228 3239.88 201.92 51984
14.06 194 2727.64 197.68 37636
13.76 193 2655.68 189.34 37249
14.61 210 3068.10 213.45 44100
15.06 223 3358.38 226.80 49729
14.77 238 3515.26 218.15 56644
15.67 273 4277.91 245.55 74529
16.86 287 4838.82 284,26 82369
17.88 287 5131.56 319.69 82369
18.70 301 5628.70 349.69 90601
451.67 7498 113,838.08 6,849.96 1,853,760
X Y
X = 15.06 Y = 249.93

Continued on next page
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Table 7.

2 con't., p. 2

nIXY-rxXzyY

b =
2 nzx° - (z X)2 h
_ 30 (113,838.08) - (451.67)(7498)
30 (6849.96) - (451.67)2
= $19.095 x 105 per $1 billion in equipment expenditures
b1 =Y - b2 X
= 249.93 - (19.095) (15.06)
= § - 37.551 ( x 10%)
YC = b1 + b2 X
YC = - 37.551 + 19.095 X (predicted sales in 105 dollars,
based on equipment expenditures
. in billion dollars)
Source: Survey of Current Business and Process Control Company
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Figure 7.4 Process Control Sales and NPEE

Scatter Diagram, Regression Line, and Residuals
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about the regression line, two bands parallel to the Y, line,
represented by Y, + Sy x, include 68.27 percent of the
data points; Y, + 28y x includes 95.45 percent of the
items; and Y, * 3Sy x includes 99.73 percent.!

Using Equation 7.13 and numbers from Table 7.2, the
computation required to determine standard deviation of
regression in our study of Process Control sales and new
plant and equipment expenditures is:

X= (1,853,760) — (—37.551)(7498) — (19.1X113,838)
30-2

Sy,

=23.6009.

In Figure 7.5 we show the band that will include about 68
percent of the data points. This is an approximation, and
we will give more exact formulas later under the discussion
of confidence intervals.

7.4 Inferences From the Regression Line Slope

The population coefficient of regression, By, is
interpreted as the average change in sales, Y, for a unit
change in the explanatory variable, X. It is, therefore, an
important measure of association between these variables.

Frequently, the first inference with which we deal in a
regression study involves whether the value of By is
significant. If By = 0, then the population regression line is
horizontal, implying no relationship between X and Y; i.e.,
changes in X have no influence on the values assumed by Y.

Student’s ¢ distribution is the basis for measuring the
statistical significance of B,. The set of hypotheses are
stated, as follows: Null Hypothesis—B, = 0, and Alternative
Hypothesis—B, # 0. Using a two-sided test, and an
appropriate level of significance and degrees of freedom (n
— 2), the critical value of ¢ is determined from Appendix B.
Then the ¢ value from the sample data is computed using:

t=P2-By | (7.14)
sz

where the standard error of the sampling distribution of by
is estimated by

s
Sp= —X - yx (1.15)

VEX-X2 /ZX2_nX2

Testing By in the Process Control study, at a 0.05
significance level and 30 — 2 = 28 degrees of freedom, the
critical 7 value equals 2.048. The rejection region is t <
—2.048 and t > +2.048. The ¢ value calculated from the
sample data is:

19.095 — 0
t= V23609
6849.96 — 30(15.056)2

_ 19.095 _ 54
3.345

Because t = 5.71 > t (p5.98 = 2.048, the null hypothesis
Bj = 0 can be rejected. Therefore the slope b, is significant

and is statistical evidence of a relationship between sales
and new plant and equipment expenditures.

In addition, we can establish an interval estimate for By
as:

Confidence limits for By = b, + tSp, (7.16)

For a 95 percent confidence interval the confidence limits
are:

19.095 * (2.048)(3.345),

12.244 to 25.946.

We conclude that sales for Process Control Compangl
increase from between $12.244(x10°) to $25.946(x10°)
for each billion dollar increase in new plant and equipment
expenditures.

7.5 Measuring Quality of the Relationship

Although we have established that the slope, by, of the
regression line is statistically significant, this information
gives us no insight into the “degree” to which the sales
variable is linearly related to new plant and equipment
expenditures. The objective of this section is to introduce
methodology that shows how closely the Y and X variables
are associated in the simple linear regression model.

One measure of the usefulness of the Y, regression line
is provided by comparing the standard deviation of
regression with the standard deviation of Y. The standard
deviation of Y measures the dispersion of Y’s around the
horizontal Y line before the explanatory variable X is
introduced. Considered as a measure of total variability in
the Y’s, it is estimated from sample data by:

sy=| 2Y -9 iJ ZY2 - (ZYP/n (7.17)

n—1 n-1

Substitution of sales values from Process Control’s data
given in Table 7.2 yields:

=33.548

Sy =J 1,853,760 — (7498)2/30
301

The standard deviation of regression Sy x was calculated
previously as $23.609(x10%) or slightly more than 70
percent of the standard deviation of Y, $33.548(x105).
These figures show that when new plant and equipment
expenditures are employed to predict sales, the dispersion
in Y decreases nearly 30 percent.

We may visualize the closeness of the relationship
between the two variables by comparing the ranges
encompassed. by both the standard deviation of regression
and the standard deviation of Y in Figure 7.6. Since the
vertical distance representing Sy x is smaller than that
representing Sy, the measure of total dispersion in the Y’s,
we say there exists a good association; i.e., the regression
line, Y., has helped explain much of the scatter in the Y’s.
Poor association, in contrast, would be represented by a
vertical distance for Sy x nearly as large as that for Sy.

Hughes and Grawoig provide the following summary of
the general idea of this type of scatter diagram analysis:
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Figure 7.5

Scatter Diagram and Standard Error of Regression; Process Control Company
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Sales 100,000 Dollars

Figure 7.6

Standard Deviation of Regression, SY » Compared to Standard Deviation
. . X
of SY : Good Association
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The standard deviation of Y, Sy, measures the scatter
of the Y values around their mean; the standard
deviation of regression, Sy x, measures the scatter of
the Y values around the line of average relationship.
If the series of values represented by the regression
line is a better description of the relationship between
the variables than is the single value that the Y
provides, the dispersion of the values around the line
will be less than around the mean. The less accurately
the estimating line describes the relationship between
the variables, the greater will be the extent of the
dispersion around the line. If the line perfectly
depicts the relationship, all the actual values will
coincide exactly with the estimates and there will be
no dispersion at all around the line. If no correlation
exists, the dispersion around the estimating line will
be as great as around the mean of the Y values.?

7.6 Coefficients of Determination of Correlation

We can analyze the dispersion of the Y values to evolve a
concept of goodness-of-fit of the regression line to observed
data. Total variation in Y may be partitioned into
dispersion which is explained and unexplained by the
regression line. From Figure 7.7 we establish the
relationship:’

(Y - Y)2=3(Y - Y )2 + XY, - Y)? (7.18)

which is verbally interpreted as

Total Unexplained Explained
sumof } = sum of +| sumof (7.19)
squares squares squares

The Z(Y — Yc)2 is termed unexplained since it is the part
of the original dispersion that remains after fitting the
regessmn line through the data. On the other hand, Z(Y,
- Y) is called explained since it is the part of the original
dispersion that is eliminated when the regression line has
been fitted.

Because we are mterested in the relationship between
(Y, — Y)2 and £ (Y — Y)2, we define the ratio

~2 _ Explained sum of squares _ Z(Y — Y)2 (7.20)

Total sum of squares (Y - )2
1-— E(Y - Yc)2
(Y - Y)?2

This ratio, based on sample data, is called the estimated
coefficient of determination and is interpreted as the
percent or fraction of total variation in Y explained by X in
the regression model. So, the closer T2 is to 1, the closer
the data points tend to fall about the regression line.

When T2 is calculated using Equation 7.20, it is
positively biased, especially for a small sample of
observations. Adjusting for the bias, the sum of squares can
be divided by their respective degrees of freedom.
Consequently,
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2-1_ Y -Y)n-2) _, _Szﬂ (7.21)
=Y -2 —1) 2y

Notice that as sample size gets large, (n — 2) and (n — 1)
effectively cancel one another, causing r~ to equal r<.
Using numbers from Table 7.3 results in:

12=1—(557.4/1164.3)
=0.538

This 12 indicates that about 54 percent of the variation in
Process Control sales is linearly related with variation in
new plant and equipment expenditures as described by the
regression model:

Y, =—37.544 + 19.095X (7.22)
Taking the square root of the coefficient of determination,

r4, we obtain the ﬁc‘oefﬁcient of correlation, r. A
computational form for ris:

~ J nZXY — ZXTY 7.23)

AR e

The sign attached to r is the sign of by in the regression
equation. Hence, r is positive when the regression line has
an upward slope. Correspondingly, it is negative when the
regression line has a downward slope. When r = 0, we say
there is no correlation (association or relationship) between
XandY.

The possible values for the coefficient of correlation
range from —1 to +1. If all data points fall on the regression
line there is perfect correlation, and r = +1 or —1. However,
when the scatter of points is such that the least-square’s line
is horizontal (coincident with Y), then 1 is zero and there is
no correlation.

7.7 A Significance Test for r

The coefficient of correlation for the Process Control
study is » = 0.733. Because this r value is computed from
sample data, we must test if it is statistically significant.
The hypothesis of no association between the X and Y
variables (Null: p = 0, where p is the population coefficient
of correlation) can be accepted or rejected based on the F
ratio in Table 7.3. The statistic is calculated by

F = Explained Variance _ (Y, — Y21 (7.24)
Unexplained Variance Z(Y — Yc)z/(n -2)

We are interested in determining whether or not the
calculated value of F at a specified significance level is
larger than the critical value obtained from the F table in
Appendix C. Since the test statistic, F = 32.575, is greater
than the critical value, F = 4.2 (numerator degrees of
freedom = 1; denominator degrees of freedom = 28; and
significance level = 0.05), the null hypothesis of no
correlation is rejected, and we accept Alternative: p # 0;

e., there is a statistically significant linear correlation
between Process Control Company sales and new plant and
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Figure 7.7
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equipment expenditures. The regression line, therefore,
better describes the data and provides a better basis for
predicting sales than the historic average level of sales.

7.8 Autocorrelation

One critical assumption of the linear regression model is
independence of the successive residual error terms, €;. Any
deficiency in this assumption defines the undesirable
property of autocorrelation. The existence of
autocorrelated residual errors indicates that some factor(s)
present in the sales variable has not been explained by the
regression model.

In order to test for the presence of autocorrelation the
Durbin-Watson statistic is calculated by:

a 2
Z (e —€_1)
i=2

d=s —m8m ™ (7.25)
% 2
e-
i=1 1
where,

€ = unexplained residual error from the regression
model for observation i with n observations.

Hence, the Durbin-Watson statistic equals the sum of the
squares of what is called “first differences” of the residual
errors divided by the sum of squares of the residual errors.

After computing the d statistic, one of the tables
provided in Appendix D is selected depending on the

desired significance level. These tables are used to
determine critical values for a two-tailed hypothesis test
where n is the number of paired data points in the
regression analysis and k' is the number of explanatory
variables in the equation.

Calculating d enables a comparison of this statistic with
appropriate critical values for dy and d, (or 4—d; and
4—dy) from Appendix D. Referring to the generalized
bottom scale of Figure 7.7a and reading left to right:
Testing for positive autocorrelation (when d <2):

If 0 <d < dj, significant positive autocorrelation exists.

If di < d < dy, test results are indecisive; ie.; no
decision.

If d, < d < 2, no significant positive autocorrelation
exists.

Testing for negative autocorrelation (d > 2):

If 2 < d < 4—du, no significant negative autocorrelation
exists. '

If 4—du <d <4—dL, test results are indecisive.

If 4-dp, < d < 4, significant negative autocorrelation
exists. '

Calculations for d for the Process Control analysis are
shown in Table 7.4. With a 0.05 level of significance and n
=30 and k' = 1, the critical values df = 1.25 and d; = 1.38
are read from Appendix D. The conclusion of statistically
significant positive autocorrelation is thus established for
our linear regression model since d = 0.552 < dp = 1.25.
This adverse result implies the necessity for further analysis,
possibly either by (1) introducing other explanatory
variables (see Chapter 8); (2) constructing an improved

Table 7.3

Partitioning Total Sum of Squares into Explained and Unexplained

Sum of Squares

(1) (2) (2)+(3)=(4) (5)
Type of Sum of Degrees Variance or F  Ratio
Variation Squares Mean Square (Explained Variance *
Freedom Unexplained Variance)
Explained z(YC-Y)Z 18156.9  18156.9 32.575
Unexplained z(Y-Yc)2 15607. 1 557.4
Total E{Y-sz 33764.0 1164.3
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Figure 7.7a: Autocorrelation Test Scale for Process Control Analysis
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functional form (Chapter 8); (3) transforming variables
(Chapter 9); or (4) some combination of these.

7.9 Interval Estimates of Prediction

Before continuing with needed refinements in the
present regression model, for instructional purposes we
consider methodology for determining predictions based on
the least-squares equation. We consider first the case of
estimating the mean or average sales, Y, for a given value of
the explanatory variable, X. Appropriate interval estimates
for expected sales can be written:

Confidence Limits 1, (Xe — X)?
foruyx=Yc+t-Syx »J N sx2 _nX2

(7.26)

where,
Xo = the value of the explanatory variable used as an
input estimator.

Applying this theory to predicting Process Control sales for
new plant and equipment expenditure, Xe = $18 billion,
the predicted sales would be Y. =37.551 + 19.095(18) =
$306.155(x105). To find 95 percent confidence limits, we
obtain

_ 2
306.155 + (2.048)(23.609)J a5+ 6%’; : 9165i)§))(1 oy

or 284.137 to 328.172.

In other words, presuming validity for the regression model,
we assert with a probability of 0.95 that average sales, when
new plant and equipment expenditures are $18 billion, will
be contained in the interval from $284.137(x105,) to
$328.172(x105).

In most cases, where the prediction of an individual Y
value on a given X is desired, we have

Confidence Limits 1 -2
14+ X = X) (7.27)
forY=Y.+t-8S —_—
c Y. X J n X2 — nX2

This equation differs from Equation 7.26 only in the first
term under the radical sign.

To further illustrate, consider Process Control sales for a
particular time period, given $18 billion in new plant and
equipment expenditures. What would be predicted sales?
Notice we are not asking about average sales for Process
Control Company, rather, we now are inquiring about the
sales for an individual time period in the future. Hence, the
confidence interval may be stated:

1. __ (18-15.056)2

306.155i(2.048)(23.609)\ll 30" G006 30(15.03562

=253.026 to 359.283.
On a given X, the predicted confidence interval for

individual sales is wider than the confidence interval for
average sales. This is always the case since the wider interval

121




‘Table 7.4 Calculations Required for Determining the Durbin-Watson
Statistic for Process Control Company Sales Forecasts.

(1) (2) (3) 4) (5) (6) (7)

- - Y 2
Y L U T W e 0 U W 5 L
776 216.027  9.973 - 59. 461
245  229.394 -15.606 - 9.973 - 5.633  31.731  243.547
254  233.213 -20.787 -15.606 - 5.181  26.843  432.099

285 240.851 -44.149 -20.787 -23.362 545.783  1949.134
261 238.559  -22.441 -44.149 21.708  471.237 503.598

249 234.740 -14.,260 -22.441 8.181 66.929 203.348
242 228.248 -13.752 -14.260 0.508 0.258 189.118
225 224,238 - 0.762 -13.752 12.990 168.740 0.581
235 231.876 - 3.124 - 0.762 - 2.362 5.579 9.759
225 220.419 - 4.581 - 3.124 - 1.457 2.123 20.986
216 238.750 22,750 - 4.581 27.331  746.984 517.562
224 237.223 13.223 22,750 - 9.527 90.764 174.848
245 257.845 12.845 13.223 - 0.378 0.143 164.994

300 267.583 -32.417 12.845 -45.262 2048.647 1050.862
327 . 278.085 -48.915 -32.417 -16.498 272.184  2392.677
298 265.674 -32.326 -48.915 16.589  275.195  1044.970
286 275.603 -10.397 -32.326 21,929  480.881 108.098
264 274.075 10.075  -10.397 20.472 419.103 101.506
233 263.000 30.000 10.075 19.925  397.006 900.000

224 247.343 23.343 30.000 - 6.657 44.316 544.896
228 233.786 5.876 23.343 -17.557  308.248 33.478
194 230.921 36.921 5.786 31.135 969.388 1363.160
193 225.193 32.193 36.921 - 4.728 22.354 1036.389
210 241.423 31.423 32.193 - 0.770 0.593 987.405
223 250.016 27.016 31.423 - 4.407 19.422 729.864
238 244 .478 6.478 27.016 -20.538  421.809 41.964
273 261.664 -11.336 6.478 -17.814  317.339 128.505
287 284.386 - 2.614 -11.336 8.722 76.073 6.833
297 303.863 16.863 - 2.614 19.477  379.353 284.361
301 310.521 18.521 16.863 1.658 . 2.749 343.027
8,611.774 15,607.030

d = 8611.774

15607.030

d = 0.552

Source: Table 7.1 and Y, calculated from Equation 7.22
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Table 7.5
Simple Regression* Forecasts: Process Control Company Sales

Based on New Plant and Equipment Expenditures, Mfg. Dur.

* %
Quarter Projected Process Control Company Sales Forecasts, 95%
Input Values Confidence Limits ( 1/10 million dollars)

Year for NPEE, Expected Sales, Hy.x Individual Sales, Y
Mfg. Dur.
bil. dol. Upper Lower Upper Lower
1-1973 19.7 371.5 305.5 397.1 280.0
2-1973 20.5 393.2 316.1 416.5 292.8
3-1973 21.3 413.8 325.9 435.2 304.5
4-1973 22,1 433.0 335.2 452.9 315.3
1-1974 22.8 451.0 343.8 469.6 325.2
2-1974 23.3 463.9 349.9 481.6 332.1
*Y = - 37,551 + 19.095X

% * Obtained from "outside' econometric model.
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Process Control Company:

Actual and Predicted Sales for 1965-1972, Sales Forecasts for
Six Quarters of 1973-1974, and Confidence Intervals for Six
Quarters of Forecasts of Expected Sales and Individual Sales
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reflects the past variability of individual quarters, rather
than the past variability of the average of many quarters.
Thus individual estimates of Y are always less precise than
estimates for means of Y, all based on a particular value of
X. For purposes of visual comparison in Figure 7.8, we have
constructed 95 percent confidence limits for estimating
average and individual sales for Process Control Company.
Usually in preparation of a short-range forecast, at least
five quarters into the future are desired. To illustrate, we
prepared forecasts (recorded in Table 7.5) for 1973 and
half of 1974 by quarters, based on simple linear regression.
We note that the 95 percent confidence limits for forecasts
of sales variable, Y (shown graphically in Figure 7.9), are
based exclusively on measures of past statistical error and,
therefore, do not include either possible errors in the future
input values of the explanatory variable X or possible
changes in the business or economic structural relationships
that underlie use of by and b, calculated from past data.

7.10 Words of Caution: Causality and Statistics

Realistic forecasts which contribute greatly to both
individual company success and to the stability of the
entire economy are the results of applying sound business
experience and judgment to relevant and timely statistical
analyses. We emphasize that regression analysis does not of
itself prove economic causality; it only measures the degree
of mathematical association between the recorded data for
sales and the explanatory variable(s). Hence a regression
equation should not be used as a predicting device unless
there is a rational causal -relationship underlying the
predicting equation.

We also emphasize that a regression model is an
approximation that is most useful over the range for which
past ‘observations are available. Extrapolation for
predicting, therefore, is hazardous since the association
among variables is more likely to change for predictions
outside the range of historical data than inside.

As a final word of caution, we point out that the use of
an established statistical regression equation for forecasting
assumes no change in past relationships over future time.
Moreover, the utilization of an equation presumes no
unusual events (e.g., economic controls, scarcity of input
resources, or the like) which would tend to reduce the
forecasting accuracy of the regression model. Hence, even
though a forecast may be comfortably within the range of
past observations, the forecaster must be constantly
perceptive of the limitations of the underlying static quality
of his model.

Footnotes

1. For small numbers of data points, however (n <30), Student’s ¢
is the theoretically correct sampling distribution rather than the
standard normal.

2. Ann Hughes and Dennis Grawoig, Statistics: A Foundation for

Analysis (Reading, Massachusetts, Addison-Wesley Publishing
Company, 1971), pp. 342-343.
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